

Agrivoltaics (a.k.a. Dual Use Solar): A Win-Win for Agriculture?

New Jersey Agricultural Experiment Station

Wendie Cohick, Ph.D.

Senior Associate Director, NJ Agricultural Experiment Station Director of Research

NJAES Vision 2025

- Special state appropriation of \$3 million/year beginning in 2018
- Strategic investment initiative to improve NJAES farms, field stations, business incubators, centers, and programs.
- These investments will provide a platform to build greater programmatic capacity to address current and future needs of NJ and broader society.

Current Funding for RAP

> FY 2022 NJAES support of \$104,000 from our special stae appropriation for initial activities including light and shade modeling, collecting data from mock-up installations, and literature & policy review to avoid duplication of effort

FY 2022 NJ State Appropriation of \$2,000,000 for the construction of agrivoltaic R&D installations at three NJAES research farms

What is Agrivoltaics?

- Combines agriculture with solar power generation (≠ solar farming)
- > Keeps agriculture as the main focus for land use
- Can be combined with both animal and plant production
- > Any yield losses are offset by income from electricity generation
- Can contribute to the viability and resiliency of farming
- Contributes to renewable energy goals (NJ: net-zero by 2050)

Examples of Agrivoltaics

Vertical bifacial panels: Large animal grazing and hay production (Next2Sun, Germany)

Tracking or fixed-tilt panels: Field and fruit crops (Europe)

Rutgers Agrivoltaics Program (RAP) Mission

- > Formed to take a leadership role in developing sciencebased answers for agrivoltaics installations across NJ
- Multidisciplinary team with expertise in crop and animal production, solar energy, engineering, soil science, economics, life-cycle analysis and sociology
- Tasked to design and construct the agrivoltaic R&D sites at NJAES farms across the state
- Perform an economic analysis of the impact of agrivoltaics on farming operations

Rutgers Agrivoltaics Program (RAP) Mission

- Provide assistance for the implementation of the Dual-Use Solar Energy Pilot Program
- Conduct outreach to farmers, project developers, policy makers, and the general public
- Collaborate at the regional/national level with other universities and publish outreach materials and scientific papers on agrivoltaics
- > The team is employing undergrad and grad students and is in the process of hiring a full-time staff member

Initial work Collecting data
 using mock-up solar
 panels

New Brunswick, NJ

Tair
RH
Bridgeton, NJ
PAR
Solar radiation
Tsoil
Soil water content

Agrivoltaic mounting (racking) systems are being installed at 3 Rutgers farms

- Single-axis tracking rows of panels that run North-South; panels track the sun from East to West (mounted on rotating beam)
- 2. Stationary vertical bifacial rows of panels that run North-South; panels are mounted vertically and able to generate power on both sides that face either East or West

Elevated systems were not included in the R&D blocks at Rutgers due to the high capital costs.

- Experiments are planned with statistical rigor in mind
- Completion of construction target April 2023
- 520 kW total installed capacity

 Proposed design 1: Cook Campus Animal Farm (New Brunswick, NJ)

 Proposed design 2: Rutgers Agricultural Research and Extension Center (Bridgeton, NJ)

 Proposed design 3: Clifford E. & Melda C. Snyder Research & Extension Farm (Pittstown, NJ)

- Single axis trackers
- Green = 5 rows of single panels
- Orange = control (no panels)
- Total number of panels: 210 (94.5 kW_{DC})
- Each bifacial panel is rated at 450 W
- 21 panels per row

Potential Funding for RAP

- ➤ The newly enacted <u>Dual-Use Solar Energy Pilot Program</u> requires any agrivoltaic system installed in an Ag Development Area (ADA) be done in association with a research study undertaken in coordination with a New Jersey public research institution of higher education
- Pending Grant Proposal for the DOE FARMS Program (Foundational Agrivoltaic Research for Megawatt Scale)
 - Conduct agricultural, soil, energy, and socioeconomic research on agrivoltaic installations to be installed on NJAES research farms;
 - 2. Technical assistance and training component, partnered with American Farmland Trust;
 - 3. Outreach component, partner is Delaware State University.
 - 4. Additional team member is the National Renewable Energy Laboratory.

Challenges encountered to date

- ➤ Power grids in rural areas often are not designed to accommodate additional generating capacity, especially when considering larger systems (> 1 MW)
- Getting interconnect approvals from local utilities varies greatly from one provider to another
- Most solar developers have limited knowledge of farming practices and how to properly design agrivoltaic systems
- Some key agrivoltaic equipment is manufactured outside the US, causing longer delivery times and additional costs
- Large-scale (grid-scale) projects have a long wait time, of over two years, to get regional interconnect approvals (PJM in our case)

In summary

- > The project has been challenging, yet rewarding
- Multidisciplinary approach is key
- > Farmer and community acceptance to be determined
- Push-back anticipated (already encountered)
- Agrivoltaics could be a real boon for agriculture, but sound research is needed
- Real benefit to doing research at a regional level

For project details, please contact the Rutgers Agrivoltaics Program Lead: Dave Specca (specca@njaes.rutgers.edu)

